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4701. The graphs of y = f(x) and y = 1
4x are

x

y (4, 1)

The relevant points are the origin, where the
graphs intersect, and (4, 1), where they don’t.
Clearly, since the gradient of y = |x| is ±1, the
graphs intersect four times in the domain [0, 4].
Outside that domain, 1

4x is either negative or
greater than 1, so cannot intersect again. Hence,
f(x) − 1

4x = 0 has precisely four roots.

4702. Scale the triangles to have side length 1.
The six right-angled triangles have interior angles
(30°, 60°, 90°), and therefore sides (x,

√
3x, 2x).

This gives x+
√

3x+2x = 1, so that x = 1
6
(
3−

√
3
)
.

The right-angled triangles have side lengths(
1
6
(
3 −

√
3
)
, 1

2
(√

3 − 1
)
, 1

3
(
3 −

√
3
))
.

Each right-angled triangle has area

A = 1
2 · 1

6
(
3 −

√
3
)

· 1
2
(√

3 − 1
)

= 1
12

(
2
√

3 − 3
)
.

The area in common to both equilateral triangles
is given by the area of an equilateral triangle minus
three of these right-angled triangles. This is

√
3

4 − 3 · 1
12

(
2
√

3 − 3
)

= 1
4
(
3 −

√
3
)
.

So, the ratio between the area of an equilateral
triangle and the area in common to both is

√
3

4 : 1
4
(
3 −

√
3
)
.

This simplifies to 1 :
√

3 − 1. So, re-scaling the
equilateral triangles to have area 1, the area in
common to both is

√
3 − 1, as required.

4703. Using a double-angle formula,

cos2 x ≡ 1
2 (cos 2x+ 1).

For parts, let u = x and v′ = 1
2 (cos 2x+ 1), giving

u′ = 1 and v = 1
4 sin 2x+ 1

2x:∫
x · 1

2 (cos 2x+ 1) dx

= 1
4 sin 2x+ 1

2x
2 −

∫
1
4 sin 2x+ 1

2x dx

= 1
4 sin 2x+ 1

8 cos 2x+ 1
4x

2 + c.

So, setting up the definite integral,∫ π

0
x cos2 x dx

=
[

1
4 sin 2x+ 1

8 cos 2x+ 1
4x

2
]π

0

=
(

1
8 + π2

4

)
−

( 1
8
)

= π2

4 , as required.

4704. By symmetry, the sphere is in contact with three
faces. The reaction forces act perpendicular to
these. Consider the forces on the sphere. Rotate
the scenario so that the reaction forces are −Ri,
−Rj and −Rk. Since the sphere is in equilibrium,

W = R(i + j + k).

Taking the magnitude, W =
√

3R. By Niii, the
reaction force exerted by the sphere on each face
of the cube is

R =
√

3
3 W.

4705. Expanding with compound-angle formulae,

sin(2x+ 1) = cos(2x− 1)
=⇒ sin 2x cos 1 + cos 2x sin 1

= cos 2x cos 1 + sin 2x sin 1
=⇒ sin 2x(cos 1 − sin 1) = cos 2x(cos 1 − sin 1)
=⇒ tan 2x = 1

=⇒ 2x = (1 + 4n)π
4

=⇒ x = (1 + 4n)π
8 for n ∈ Z, as required.

4706. The squared distance between (x, y) and (1, 1) is

d2 = (x− 1)2 + (y − 1)2.

Substituting for y, this is

d2 = (x− 1)2 +
((

1 −
√
x

)2 − 1
)2

≡ (x− 1)2 +
(
x− 2

√
x

)2

≡ x2 − 2x+ 1 + x2 − 4x 3
2 + 4x

≡ 2x2 − 4x 3
2 + 4x+ 1.

To maximise this, we set the derivative to zero:

4x− 6x 1
2 + 4 = 0

=⇒
(
2x 1

2 − 1
)(
x

1
2 − 2

)
= 0

=⇒ x
1
2 = 2, 1

2

=⇒ x = 4, 1
4 .

The former doesn’t produce points on the curve.
The latter gives (1/4, 1/4), at a squared distance of
9/8 > 1. Also, at the extreme points of the curve,
which are (1, 0) and (0, 1), the distance is 1. Hence,
the distance between the curve and the point (1, 1)
is never less than 1.
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4707. The second terms are 1
2 (a+ b) in the ap and

√
ab

in the gp. We prove the result as follows:

(a− b)2 ≥ 0
=⇒ a2 − 2ab+ b2 ≥ 0
=⇒ a2 + 2ab+ b2 ≥ 4ab
=⇒ (a+ b)2 ≥ 4ab.

Since a and b are positive,

a+ b ≥ 2
√
ab

=⇒ a+ b

2 ≥
√
ab, as required.

Nota Bene

This is the am-gm (arithmetic mean-geometric
mean) inequality. Equality holds if and only if
a = b. In the language of this question, that is if
both sequences are constant.

4708. Call 1
41 of the original integral I:

I =
∫
e4x sin 5x dx.

We proceed by the tabular integration method:

Signs Derivatives Integrals
+ sin 5x e4x

− 5 cos 5x 1
4e

4x

+ −25 sin 5x 1
16e

4x

This gives

I = 1
4e

4x sin 5x− 5
16e

4x − 25
16I

=⇒ 41I = 4e4x − 5e4x.

With a constant of integration,∫
41e4x sin 5x dx

= e4x(4 sin 5x− 5 cos 5x) + c, as required.

4709. A stationary point on the x axis is a double root.
So, the quartic must be expressible as

4x4 + 4x3 + kx2 − 2x+ 1
≡ 4(x− a)2(x− b)2

≡ 4(x2 − 2ax+ a2)(x2 − 2bx+ b2).

Substituting x = 0 gives 4a2b2 = 1, so b = ± 1
2a .

Equating coefficients of x,

−8ab2 − 8a2b = −2
=⇒ 4ab2 + 4a2b− 1 = 0.

Substituting b = ± 1
2a ,

1
a ± 2a− 1 = 0

=⇒ ± 2a2 − a+ 1 = 0.

The positive version has ∆ < 0, so no real roots.
The negative version gives a = −1 or a = 1/2.
These are the x coordinates of the sps:

x

y

−1 1
2

The value of k is −3.

4710. The entire map has rotational symmetry around
the origin. So, the shortest pass must pass through
O. Adding axes, the diagram is

A

B
x

y

The central section of path has equation y = kx.
We require this to be tangential to the parabola
y = (x− 1)(x− 4). For intersections,

(x− 1)(x− 4) − kx = 0
=⇒ x2 − (5 + k)x+ 4 = 0.

We need this to have exactly one root. Setting the
discriminant ∆ = 0,

(5 + k)2 − 16 = 0
=⇒ (5 + k) = ±4
=⇒ k = −1,−9.

The root k = −9 is tangential to the parabola for
negative x and large y. This is not the root we
require. The relevant path is y = x. This gives
an intersection at (2,−2). So, the vector between
the points of tangency is 4i + 4j. The distance,
therefore, is 4

√
2 km, as required.

4711. For v ≪ c, powers of v2
/c2 greater than 2 can be

neglected. Setting aside mc2 for now, consider the
following expansion:(

1 − v2

c2

)− 1
2

≈ 1 +
(
− 1

2
) (

−v2

c2

)
+

(
− 1

2
)(

− 3
2
)

2!

(
−v2

c2

)2

= 1 + v2

2c2 + 3v4

8c4 .

For the energy, we multiply by mc2. This gives

E ≈ mc2 + mv2

2 + 3mv4

8c2 .
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Nota Bene

1 The term E0 = mc2 is the rest energy of a
massive particle. This is not modelled at all
by Newtonian theory. It describes the energy
released in nuclear reactions.

2 The term E1 = 1
2mv

2 is kinetic energy in the
Newtonian model, a first approximation to
special relativity, which holds for small v.

3 The term E2 = 3mv4

8c2 is kinetic energy in the
first post-Newtonian approximation. This is
non-negligible as v gets large.

Terms E2 and the neglected E3, E4, ... represent
the breakdown of Newtonian theory as particles
reach speeds comparable to that of light.

4712. Dividing both sides by ex,

1 + e−x cosx = sin2 x.

By the Pythagorean identity, this is

cos2 x+ e−x cosx = 0
=⇒ cosx(cosx+ e−x) = 0
=⇒ cosx = 0 or cosx = e−x.

Consider y = cosx, y = 0 and y = e−x. For large
x, the behaviour is as shown (not to scale):

x = xa

x = xb

For any positive root of cosx = 0, there is a root
of cosx = e−x just before or just after it. As
e−x → 0, these get closer together, producing pairs
of roots xa < xb with xb − xa → 0.

4713. Completing the square,

9x2 + 6x+ 2 = (3x+ 1)2 + 1.

Let 3x + 1 = tan θ, which gives 3 dx = sec2 θ dθ.
As x → ±∞, θ → ±π/2; these are the new limits.
Enacting the substitution,∫ ∞

−∞

3
(3x+ 1)2 + 1 dx

=
∫ π

2

− π
2

1
tan2 θ + 1

sec2 θ dθ

=
∫ π

2

− π
2

1 dθ

=
[
θ
] π

2
− π

2

= π, as required.

4714. The first equation is quadratic in y:

2y − 1 = (x− 1)(y2 − 2y + 1)
=⇒ (x− 1)y2 − 2xy + x = 0

=⇒ y = 2x±
√

4x2 − 4x(x− 1)
2(x− 1)

≡ x±
√
x

x− 1

≡
√
x (

√
x± 1)

(
√
x+ 1) (

√
x− 1) .

Dividing top and bottom by (
√
x∓ 1) gives

y =
√
x√

x± 1 .

So, the required implication holds.

4715. Assume, for a contradiction, that there are finitely
many prime numbers. Call them

p1 < p2 < ... < pn.

Let P = p1p2...pn and consider P + 1. Since P
is divisible by all of the prime numbers, P + 1 is
divisible by none of them. Hence, P + 1 has no
prime factors other than itself, and must be prime.
But P + 1 is larger than pn, so cannot be in the
list. This is a contradiction. Therefore, there are
infinitely many prime numbers.

4716. (a) We know that g′′(x) − h′′(x) = 0 for all x.
Integrating this twice,

g(x) − h(x) = ax+ b.

So, g(x) − h(x) is linear in x.
(b) By the quotient rule,

y = g(x)
h(x)

=⇒ dy

dx
= g′(x) h(x) − g(x) h′(x)

h(x)2 .

Because h(x) > 0, this is zero exactly when its
numerator is zero:

g′(x) h(x) − g(x) h′(x) = 0.

Since g(x)−h(x) is constant, we can substitute
g(x) = h(x) + k and g′(x) = h′(x), giving

h′(x) h(x) − (h(x) + k) h′(x) = 0
⇐⇒ −k h′(x) = 0.

This always has at least one root, because
h′(x), as the derivative of a quartic, is cubic.
So, there is at least one stationary value of

y = g(x)
h(x) .
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4717. (a) By Pythagoras,

|AX| =
√

(cos θ + 1)2 + sin2 θ

≡
√

cos2 θ + 2 cos θ + 1 + sin2 θ

≡
√

2 + 2 cos θ, as required.

(b) Using the given identity,

|AX| = 2 cos 1
2θ.

The other lengths can be found together, the
only difference being a ∓:

|BX|, |CX| =
√

(cos θ − 1/2)2 + (sin θ ∓
√

3/2)2

≡
√

2 − cos θ ∓
√

3 sin θ.

In harmonic form, this is√
2 + 2 cos

(
x± 2π

3
)
.

Using the given identity again gives

2 cos
( 1

2θ ± π
3

)
.

Using a compound-angle formula,

|BX|, |CX| = cos 1
2θ ∓

√
3 sin 1

2θ.

Adding these, the sines cancel:

|BX| + |CX| = 2 cos 1
2θ.

So, |AX| = |BX| + |CX|, as required.

4718. Let X = x− a and Y = y − b. The graphs are
1 X2Y 2 = 1,
2 X2 + Y 2 = 2.

These are the reciprocal graphs XY = ±1, and a
circle of radius

√
2. Solving for intersections, we

find points of tangency at (±1,±1), with all four
combinations of ± signs.
The original curves are translations of these by
ai + bj. This puts the centre of the circle and the
reciprocal graphs at (a, b). The points of tangency
are now at (a± 1, b± 1).

(a, b)

x

y

4719. Expanding the rhs,

2 +
√

2 sin
(
x− π

4
)

≡ 2 +
√

2
(

sin x cos π
4 − cosx sin π

4
)

≡ 2 + sin x− cosx.

For small x, sin x ≈ x and cosx ≈ 1 − 1
2x

2. So,
the rhs is approximately

2 + x−
(
1 − 1

2x
2)

≡ 1 + x+ 1
2x

2.

This is the given quadratic approximation to ex.
So, for x close to zero, ex ≈ 2 +

√
2 sin

(
x− π

4
)
.

Nota Bene

The graphs, with y = ex dashed, are:

x

y

1

4720. Consider the positive quadrant only, where |xy| is
simply xy. The arc length is π

2 . Let θ be the usual
angle anticlockwise from the positive x axis, giving
xy = cos θ sin θ. This is 1

2 sin 2θ. So, the relevant
calculation is

1
π/2

∫ π
2

0

1
2 sin 2θ dθ

= 2
π

[
− 1

4 cos 2θ
] π

2

0

= 2
π

(
1
4 −

(
− 1

4
))

= 1
π , as required.

4721. The equation of the normal at
(
p, p2)

is

y − p2 = − 1
2p (x− p).

Setting x = 0, the y intercept is at y = p2 + 1
2 . The

relevant area is that of a rectangle plus that of a
triangle, minus that under the curve.

x

y (
p, p2)

A = Arect +Atri −Acurve

= p3 + 1
4p−

∫ p

0
x2 dx

≡ p3 + 1
4p− 1

3p
3

≡ 2
3p

3 + 1
4p, as required.
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4722. The derivatives with respect to t are ẋ = −2 sin 2t
and ẏ = 12 sin2 t cos t. By the chain rule,

dy

dx
= 12 sin2 t cos t

−2 sin 2t

≡ 6 sin2 t cos t
−2 sin t cos t

≡ −3 sin t.

The point P has (primary) parameter t = π
6 . So,

the gradient at P is − 3
2 . The tangent at P is

y − 1
2 = − 3

2
(
x− 1

2
)

=⇒ y = − 3
2x+ 5

4 .

This intersects the curve where

4 sin3 t = − 3
2 cos 2t+ 5

4

=⇒ 4 sin3 t = − 3
2
(
1 − 2 sin2 t

)
+ 5

4

=⇒ 16 sin3 t− 12 sin2 t+ 1 = 0
=⇒ (2 sin t− 1)2(4 sin t+ 1) = 0.

The squared factor corresponds to P . Hence, at
Q, sin t = − 1

4 . This gives coordinates (7/8,−1/16) ,
as required.

4723. Factorising, the inequality is

y2 + sin x cosx− y sin x− y cosx ≤ 0
⇐⇒ (y − sin x)(y − cosx) ≤ 0.

Such a product is non-positive iff exactly one of
its factors is non-positive. So, points (x, y) which
satisfy this are between y = sin x and y = cosx:

x

y

4724. It is possible, as the following example shows:

2

1 4

3

The resultant force is zero, so equilibrium is not
broken by translation. Also, the resultant moment
around x = 1 is

1 × 1 + 4 × 2 − 3 × 3 = 0.

So, neither does the object rotate.

4725. Writing sin2 x ≡ 1 − cos2 x,∫ π
2

0
sin3 x dx

=
∫ π

2

0
sin x− sin x cos2 x dx.

We integrate the second term by inspection, giving[
− cosx+ 1

3 cos3 x
] π

2

0

=
(
0
)

−
(
−1 + 1

3
)

= 2
3 , as required.

4726. The circle is x2 + y2 = 10. We rearrange the first
equation to y = 3

√
26 − x3. Substituting this in,

x2 +
(
26 − x3) 2

3 = 10

=⇒ x2 +
(
26 − x3) 2

3 − 10 = 0.

The Newton-Raphson iteration is

xn+1 = xn −
x2

n +
(
26 − x3

n

) 2
3 − 10

2xn + 2
3
(
26 − x3

n

)− 1
3 · −3x2

n

.

Running this iteration
1 with x0 = 2, we get x1 = 1.0835 and then
xn → 1.3247. This gives y = 2.8714.

2 with x0 = −2, we get x1 = −1.3052 and then
xn → −1. This gives y = 3. Testing this, it
is an exact solution.

The curves are symmetrical in y = x. So, the
four points of intersection are (1.32, 2.87) and
(2.87, 1.32) to 3sf, and (−1, 3) and (3,−1) exactly.

4727. The derivative is

f ′(x) = 1 + x+ x2 + 2
3x

3 + 1
4x

4.

We need to show that this is positive for all x ∈ R.
Looking for stationary values of the derivative
f ′(x), we differentiate again:

f ′′(x) = 1 + 2x+ 2x2 + x3.

Setting this to zero, we find a root of f ′′(x) at
x = −1. Taking out the relevant factor,(

1 + x
)(

1 + x+ x2)
= 0.

The quadratic factor has ∆ = −3 < 0, so has
no real roots. Hence, there is only one stationary
value of f ′(x), which is f ′(−1) = 7

12 . Since this is
positive, f ′(x) must (because it is a polynomial of
even degree) be positive for all x ∈ R.
So, f is increasing everywhere, as required.

4728. Multiplying up by the denominators, we require

x2 + 2x+ 3 ≡ A(x2 + 1) +Bx.

Equating coefficients of x2, A = 1. But, equating
the constant terms, A = 3. This is a contradiction.
Hence, there are no constants A,B ∈ R for which
this is an identity.
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4729. The rope is smooth, so the tension is the same
everywhere. By symmetry, therefore, the lines of
action must lie along the angle bisectors. Let the
half-angles at A,B,C,D be α, β, γ, δ. We know

α+ β + γ + δ = 180°.

Consider two triangles, those formed of A, B and
the intersection of their angle bisectors, and C, D
and the intersection of their angle bisectors.

α

β

δ

γ

These have interior angles

(α, β, 180° − α− β)
(γ, δ, 180° − γ − δ)

The quadrilateral of intersections contains angles
180° − α− β and 180° − γ − δ, adding to

(180° − α− β) + (180° − γ − δ)
= 360° − α− β − γ − δ

= 180°.

Hence, according to the relevant circle theorem,
the quadrilateral of intersections is cyclic. qed.

4730. (a) Using identities,

y2 = 4 sin2 t cos2 t

≡ 4(1 − cos2 t) cos2 t

= 4x2(
1 − x2)

.

(b) At a point of self-intersection, two different
values of the parameter produce the same
(x, y) point. Calling these s, t ∈ [0, 2π),

cos s = cos t
∴ s+ t = 2π.

Substituting this in,

sin 2(2π − t) = sin 2t
=⇒ − sin 2t = sin 2t
=⇒ sin 2t = 0
∴ t = 0, π

2 , π,
3π
2 .

The coordinates are
t 0 π

2 π 3π
2

(x, y) (1, 0) (0, 0) (−1, 0) (0, 0).
So, there is one point of self-intersection, which
is the origin. This is attained at the primary
parameter values t = π

2 ,
3π
2 .

4731. (a) Using the product rule,

P = e−2x sin kx

=⇒ dP

dt
= −2e−2x sin kx+ ke−2x cos kx

≡ e−2x
(
−2 sin kx+ k cos kx

)
=⇒ d2P

dt2
= −2e−2x

(
−2 sin kx+ k cos kx

)
+ e−2x

(
−2k cos kx− k2 sin kx

)
≡ e−2x

((
4 − k2)

sin kx− 4k cos kx
)
.

Substituting into the lhs of the de, there is a
common factor of e−2x. This is non-zero. The
other factor is((

4 − k2)
sin kx− 4k cos kx

)
+ 4

(
−2 sin kx+ k cos kx

)
+ 13 sin kx

≡
(
9 − k2)

sin kx.

So, if we choose k = 3, then the lhs of the
de is identically zero. The relevant population
curve is P = e−2x sin 3x.

(b) The population curve is a sinusoidal oscillation
around the historical value, whose amplitude
decays exponentially:

t

P

In the long-term, the oscillations dwindle to
zero. Population returns to its historical size.

4732. Let P be the point of tangency for x > 0. The x
intercept k of the tangent line is minimised if P
is the point of inflection of the curve. Looking for
this boundary case, we differentiate:

y = e− 1
2 x2

=⇒ dy

dx
= −xe− 1

2 x2

=⇒ d2y

dx2 = (x2 − 1)e− 1
2 x2

.

So, the points of inflection are at x = ±1. At
x = 1, the gradient is m = −e− 1

2 . Hence, the
equation of the tangent is

y − e− 1
2 = −e− 1

2 (x− 1).

Substituting y = 0,

−e− 1
2 = −e− 1

2 (x− 1)
=⇒ x = 2.

This is the minimal boundary case. There is no
upper bound on the value of k. So, the general
result, including symmetrical tangents for x < 0,
is |k| ≥ 2.
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4733. Consider the boundary case, in which the cylinder
has maximal volume. It must touch the surface of
the sphere. In cross-section, the scenario is

R

r

By Pythagoras, the height of the cylinder is

h = 2
√
R2 − r2.

So, the volume of the cylinder is

V = πr2h

= 2πr2
√
R2 − r2.

For optimisation, we set the derivative to zero:

4πr
√
R2 − r2

+ 2πr2 · 1
2
(
R2 − r2)− 1

2 · −2r = 0
=⇒ 2r

(
R2 − r2)

− r3 = 0
=⇒ 2rR2 − 3r3 = 0
=⇒ r = 0 or r2 = 2

3R
2.

The former is clearly a minimum. So, we use the
latter. It is maximal, so the volume must satisfy

V ≤ 2π
( 2

3R
2)√

R2 − 2
3R

2

= 4πR3

3
√

3
, as required.

4734. Differentiating by the quotient rule,

dy

dx
=
x2(x2 − 1)− 1

2 −
(√
x2 − 1 − 1

)
x2

≡ x2 − (x2 − 1) +
√
x2 − 1

x2
√
x2 − 1

≡
√
x2 − 1 + 1
x2

√
x2 − 1

.

Setting this to 3
10 ,

√
x2 − 1 + 1
x2

√
x2 − 1

= 3
10

=⇒ 10
√
x2 − 1 + 10 = 3x2

√
x2 − 1

=⇒ (3x2 − 10)
√
x2 − 1 = 10

=⇒ 9x6 − 69x4 + 160x2 − 200 = 0.

This is a cubic in x2. Using a polynomial solver,
x2 = 5. This gives x = ±

√
5. So, the coordinates

at which the gradient is 3
10 are(

±
√

5,± 1√
5

)
.

4735. Since the graph y = h(x) is symmetrical around
x = 0, the mean of the roots is 0. Hence, we can
express them as {−3k,−k, k, 3k}, where k is half
the common difference. According to the factor
theorem,

h(x) = (x+ 3k)(x+ k)(x− k)(x− 3k)
≡

(
x2 − 9k2)(

x2 − k2)
= x4 − 10k2x2 + 9k4, as required.

4736. To simplify sin(arctan x), let x = tan y. Then

sin(arctan x) = sin y

= 1√
cosec2 y

≡ 1√
1 + cot2 y

= 1√
1 + 1

x2

≡ x√
x2 + 1

.

Also,

cos(arctan x) = cos y

= 1√
sec2 y

≡ 1√
1 + tan2 y

= 1√
1 + x2

.

Substituting x = 1
2 ,

sin
(
arctan 1

2
)

=
1/2√

5/4
= 1√

5 ,

cos
(
arctan 1

2 ) = 1√
5/4

= 2√
5 .

Multiplying these and a factor of 2,

sin
(
2 arctan 1

2
)

= 2 · 1√
5 · 2√

5 = 4
5 .

So, 2 arctan 1
2 = arcsin 4

5 , as required.

4737. The gradients of the lines are −m1 and m2, so the
gradients of the reaction forces are 1/m1 and −1/m2.
The forces and their components are

R1

m1R1√
m2

1+1

R1√
m2

1+1

R2

m2R2√
m2

2+1

R2√
m2

2+1
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Horizontal equilibrium gives

m1R1√
m2

1 + 1
− m2R2√

m2
2 + 1

= 0.

Vertical equilibrium gives

R1√
m2

1 + 1
+ R2√

m2
2 + 1

= W.

Adding 1
m2

times the horizontal to the vertical,

R1√
m2

1 + 1
+

m1
m2
R1√

m2
1 + 1

= W

=⇒ R1
1 + m1

m2√
m2

1 + 1
= W

=⇒ R1 =
√
m2

1 + 1
1 + m1

m2

W.

Multiplying top and bottom by m2,

R1 = m2
√
m2

1 + 1
m1 +m2

W.

The component diagrams are symmetrical, so the
corresponding result is

R2 = m1
√
m2

2 + 1
m1 +m2

W.

4738. Separating the variables,∫
cos2 3y dy =

∫ √
x4 + 2x2 dx.

Using a double-angle formula, the lhs is∫
1
2
(
1 + cos 6y) dy

= 1
2y + 1

12 sin 6y + c1.

Taking out a factor of
√
x2, the rhs can then be

integrated by inspection:∫
x

√
x2 + 2 dx

= 1
2

∫
2x

√
x2 + 2 dx

= 1
2 · 2

3 (x2 + 2) 3
2 + c2

≡ 1
3 (x2 + 2) 3

2 + c2.

Multiplying lhs and rhs by 12 and combining the
constants of integration, the general solution is as
required:

6y + sin 6y = 4(x2 + 2) 3
2 + c.

4739. Using a compound-angle formula, the rhs is

10 cos
(
θ + arctan 3

4
)

≡ 10 cos θ cos
(
arctan 3

4
)

− 10 sin θ sin
(
arctan 3

4
)

≡ 8 cos θ − 6 sin θ.

Using a double-angle formula, the full equation is

6 sin θ cos θ − 8 = 8 cos θ − 6 sin θ
=⇒ 3 sin θ cos θ + 3 sin θ − 4 cos θ − 4 = 0
=⇒ (3 sin θ − 4)(cos θ + 1) = 0.

The first factor has no roots, as 4
3 > 1. The second

factor gives cos θ = −1, so θ = π.

4740. The line (dashed below) to the point of intersection
near the midpoints of the sides bisects the angle of
rotation θ.

The kite of which it is a diagonal has long sides
of length 1

2 and short sides of length 1
2 tan 1

2θ. We
can approximate this with 1

4θ. Subtracting this
from 1, the long non-hypotenuses of the triangles
have approximate length 1

2 − 1
4θ. This gives their

short sides as

tan θ
( 1

2 − 1
4θ

)
≈ θ

( 1
2 − 1

4θ
)
.

So, using 1
2bh, the total area of the triangles is

A ≈ 8 × 1
2

( 1
2 − 1

4θ
)

· θ
( 1

2 − 1
4θ

)
= θ − θ2 + 1

4θ
3.

Neglecting the term in θ3,

A ≈ θ(1 − θ), as required.

4741. The restricted possibility space consists of all
strictly increasing sequences of four scores. There
is exactly one increasing sequence for every set of
four scores. Therefore, the restricted possibility
space contains 6C4 = 15 outcomes. There are
5C3 = 10 of these which contain a six. So, the
probability is 2/3.

4742. The equation of the trajectory with initial speed u
and angle of projection θ is

y = x tan θ − x2 g

2u2 (tan2 θ + 1)

=⇒ gx2 tan2 θ − 2u2x tan θ + gx2 − 2u2y = 0.

This is a quadratic in tan θ. For (x, y) points in
the shaded region, there are two possible angles
of projection. For those outside, there are none.
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So, on the parabola of safety, there is one. Setting
∆ = 0,

4u4x2 − 4gx2(gx2 − 2u2y) = 0
=⇒ x2(u4 − g2x2 − 2gu2y) = 0.

The value x = 0 corresponds only to points on the
y axis. So, we can divide through by 4x2, giving

u4 − g2x2 − 2gu2y

=⇒ y = u2

2g − gx2

2u2 .

4743. (a) Using the factorial definition of nCr,

n!
k!(n− k)! + n!

(k + 1)!(n− k − 1)!

= n!
(k + 2)!(n− k − 2)! .

Dividing by n! (it cannot be zero),

1
k!(n− k)! + 1

(k + 1)!(n− k − 1)!

= 1
(k + 2)!(n− k − 2)! .

Multiplying by (k + 2)!(n− k)!,

(k + 1)(k + 2) + (k + 2)(n− k)
= (n− k)(n− k − 1)

=⇒ n2 − (3k + 3)n+ k2 − 2 = 0.

The quadratic formula gives

n = 3k + 3 ±
√

(3k + 3)2 − 4(k2 − 2)
2

≡ 3k + 3 ±
√

5k2 + 18k + 17
2 .

(b) For both n and k to be natural numbers, the
discriminant must be a square. Testing the
values of k in ∆ = 5k2 +18k+17, we find that
only k = 4 generates a square: 169. This gives

n = 15 ± 13
2 = 1, 14.

We reject the former, as nCk is undefined for
n < k. So, k = 4 and n = 14:

14C4 + 14C5 = 1001 + 2002 = 3003 = 14C6.

4744. Let u =
√
x + 1. Then du = 1

2x
− 1

2 dx, which we
can rewrite as dx = 2(u − 1) du. The new limits
are u = 1 to u = 2.∫ 1

0

1√
x+ 1 dx

=
∫ 2

1

1
u

· 2(u− 1) du.

Multiplying the integrand out, this is∫ 2

1
2 − 2

u
du

=
[
2u− 2 ln |u|

]2

1

=
(
4 − 2 ln 2

)
−

(
2 − 2 ln 1

)
= 2 − ln 4, as required.

4745. The upper quarter circle has centre (0,−1) and
radius

√
2. So, for points on it,

x2 + (y + 1)2 = 2

∴ y =
√

2 − x2 − 1.

The area of the shaded rectangle is

A = 4xy = 4x
√

2 − x2 − 4x.

Setting the derivative to zero,

4
√

2 − x2 + 4x · 1
2
(
2 − x2)− 1

2 (−2x) − 4 = 0

=⇒
√

2 − x2 − x2(
2 − x2)− 1

2 − 1 = 0.

Multiplying by
√

2 − x2,(
2 − x2)

− x2 −
√

2 − x2 = 0

=⇒ 2 − 2x2 =
√

2 − x2

=⇒ 4 − 8x2 + 4x4 = 2 − x2

=⇒ 4x4 − 7x2 + 2 = 0

=⇒ x2 = 7±
√

17
8 .

Both roots are positive. The larger gives a value
of x2 greater than 1, which isn’t possible. So, the
required value is

x =
√

7−
√

17
8 .

4746. From the standard definition of the derivative,

dy

dx
= lim

h→0

(x+ h) 1
3 − x

1
3

h
.

To use the expansion a3−b3 ≡ (a−b)
(
a2+ab+b2)

,
we multiply top and bottom by

(x+ h) 2
3 + (x+ h) 1

3x
1
3 + x

1
3 .

This gives

lim
h→0

(x+ h) − x

h
(
(x+ h) 2

3 + (x+ h) 1
3x

1
3 + x

1
3
)

≡ lim
h→0

1(
(x+ h) 2

3 + (x+ h) 1
3x

1
3 + x

1
3
) .

At this point we can take the limit:

dy

dx
= 1

3x 2
3

= 1
3x

− 2
3 , as required.
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4747. The proposed solution and its derivatives are

y(0) = xex

=⇒ y(1) = (x+ 1)ex

=⇒ y(2) = (x+ 2)ex

=⇒ y(3) = (x+ 3)ex

=⇒ y(4) = (x+ 4)ex.

Substituting into the lhs of the de,

y(4) − 2y(3) + 2y(2) − 2y(1) + y(0)

=
(
x+ 4 − 2(x+ 3) + 2(x+ 2) − 2(x+ 1) + x

)
ex

≡
(
0
)
ex

≡ 0.

The proposed solution satisfies the de.

Nota Bene

The notation y(n) for the nth derivative comes
in handy when expressing general differentiation
formulae. For example, the general result in this
question, with y = xex, is

y(n) = (x+ n)ex.

4748. Setting dy
dx = 0,

2xy + y2 = 0
=⇒ y = 0 or y = −2x.

There are no points on the curve at which y = 0.
Instead substituting y = −2x in,

x2(−2x) + x(−2x)2 = 2
=⇒ x = 1.

At x = 1, y = −2 or 1. Testing the gradients, we
find that the tangent is parallel to the x axis at
(1,−2) and has gradient 1 at (1, 1). So, the former
is P and the latter is R.
The problem is symmetrical in y = x, so Q must
be (−2, 1). Sketching the curve and the tangents:

Q
R

P

x

y

The vertices of the triangle are at (−2,−2), (−2, 4)
and (4,−2). Its area is 1

2 · 62 = 18, as required.

4749. Consider x ≥ 0 and x < 0 separately:

1 On [0,∞), the inequality is

(5 − x)(5 − x) > 9.

For x ∈ [0,∞), this gives x ∈ [0, 2) ∪ (8,∞).
2 On (−∞, 0), the mod sign is active, hence the

inequality is

(5 − x)(5 + x) > 9.

For x ∈ (−∞, 0), this gives x ∈ (−4, 0).

Combining these,(
5 − x

)(
5 − |x|

)
> 9

=⇒ x ∈ (−4, 2) ∪ (8,∞).

4750. For x > 0, the curve is y = 2 ln x. Its gradient at
x = 1 is m = 2. So, the sides of the cone have
gradient 2. Since the funnel is smooth, it can only
apply a normal reaction force to the plug. For
x > 0, this is along a line of gradient − 1

2 . In cross-
section, the force diagram for the plug is

mg

RR

Since the funnel is rotationally symmetrical, every
other cross-section is identical. So, at all points
around the circle of contact, the reaction force
has the same 2 : 1 ratio of horizontal to vertical
components. Hence, without loss of generality, we
can work exclusively in the diagram above, with
the two R forces together representing the total
(not resultant, see note below) force applied, i.e.
2R = Rtotal.
Resolving vertically,

2R× 1√
5 −mg = 0

=⇒ Rtotal =
√

5mg.

By Niii, the total force exerted on the plug must
be equal in magnitude to the total force exerted on
the funnel. This force is spread over the circle of
contact, which has a radius of 1 cm, and therefore
a circumference of 2π cm. So, the force applied
per centimetre of the circle of contact is

√
5mg
2π N.
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Nota Bene

The total force is not the same as the resultant
force. Because the plug pushes symmetrically in
all horizontal directions, the resultant horizontal
force is zero: the sum of the forces as vectors. The
total horizontal force, however, as felt locally per
centimetre of contact, is not zero: it depends on
the magnitudes of the vectors.
An analogy: suppose you stood in a door-frame
and pushed outwards on both sides, applying 10 N
with each arm. You apply no resultant force to the
door frame, because, adding vectors, +10−10 = 0
N. However, you do apply a total force to the door
frame, because, adding scalars, 10 + 10 = 20 N.

4751. (a) Every move adds or subtracts 1 from either
the x or y coordinate. The parity of the sum
x + y, therefore, changes by 1 each iteration.
Initially, x+y = 0, which is even. So, after five
steps, x + y must be odd. So, the probability
of being at (1, 1) is zero.

(b) To end up at (3, 0), there must be at least three
i steps. The remaining two can be ±i or ±j.
This gives two possible types of route to (3, 0):

1 {i, i, i, i,−i}. This outcome, in this order,
has probability 1/45. There are 5 orders of
the set.

2 {i, i, i, j,−j}. This outcome, in this order,
has probability 1/45. Since three of the
steps are identical, the number of orders
of this set is 5!/3!.

Hence, the total probability is

p = 5 × 1
4

5 + 5!
3! × 1

4
5 = 25

1024 .

4752. Using various identities,

4 tan 2ψ + 3 cotψ sec2 ψ = 0

=⇒ 8 tanψ
1 − tan2 ϕ

+ 3(1 + tan2 ψ)
tanψ = 0

=⇒ 8 tan2 ψ + 3(1 + tan2 ψ)(1 − tan2 ϕ) = 0
=⇒ 3 tan4 ψ − 8 tan2 ψ + 3 = 0.

This is a quadratic in tan2 ψ:

(3 tan2 ψ + 1)(tan2 ψ − 3) = 0.

The first factor has no real roots. The latter has

tanψ = ±
√

3
∴ ψ ∈

{ 1
3π,

2
3π,

4
3π,

5
3π

}
.

4753. Call the quartic y = g(x). We know that g′′(x)
is quadratic. It is zero at x = p, q, so must be a
scalar multiple of ax2 + bx+ c:

g′′(x) = kax2 + kbx+ kc

=⇒ g′(x) = 1
3kax

3 + 1
2kbx

2 + kcx+ d.

We are told that g′(0) = 0, so d = 0. Integrating,

g(x) = 1
12kax

4 + 1
6kbx

3 + 1
2kcx

2 + e.

The curve y = g(x) passes through the origin, so
e = 0. Also, the quartic is monic, so 1

12ka = 1,
which gives k = 12/a. The quartic is

y = x4 + 2b
a x

3 + 6c
a x

2.

4754. (a) The derivative is

f ′(x) = 8x3 − 6x2 + 2x+ 1.

Setting this equal to 1,

8x3 − 6x2 + 2x+ 1 = 1
=⇒ 8x3 − 6x2 + 2x = 0
=⇒ x(8x2 − 6x+ 2) = 0.

This has a root x = 0. There are no other
real roots, as the quadratic has ∆ = −28 < 0.
Hence, since f ′(x) is a positive cubic, f ′(x) > 1
for all x > 0.

(b) The second derivative is

f ′′(x) = 24x2 − 12x+ 2.

This has ∆ = −48 < 0, so f ′′(x) > 0 for all x.
So, the gradient f ′(x) is increasing everywhere.
We know, from part (a), that

xn < xn+1 < xn+2.

Since the gradient is increasing everywhere,
the difference between subsequent terms of the
sequence is increasing:

xn+2 − xn+1 > xn+1 − xn

=⇒ xn+2 + xn > 2xn+1, as required.

4755. Differentiating,

ẋ = (2k + 1)t2k − (2k − 1)t2k−2.

Solving for y intercepts

t2k+1 − t2k−1 = 0
=⇒ t2k−1(t2 − 1) = 0
=⇒ t = 0,±1.

So, using the parametric integration formula, the
area in question is given by

A = 2
∫ 1

0
t2k

(
(2k + 1)t2k − (2k − 1)t2k−2

)
dt

≡ 2
∫ 1

0
(2k + 1)t4k − (2k − 1)t4k−2 dt

≡ 2
[

2k + 1
4k + 1 t

4k+1 − 2k − 1
4k − 1 t

4k−1
]1

0

≡ 2
(

2k + 1
4k + 1 − 2k − 1

4k − 1

)
≡ 8k

16k2 + 1 , as required.
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4756. The minimum possible value is zero, attained when
A and B are mutually exclusive.
For the maximum value, events A and B coincide,
and both are subsets of C. This gives a probability
of 1

2 , which cannot be exceeded. All probabilities
between these two extremes are attainable, as the
overlap between A and B increases from zero to 1

2 .
In set notation, P(A ∩B ∩ C) ∈ [0, 1/2].

4757. For the fraction to be less than 1, we require one
of the following, where N is the numerator and D
the denominator:

• N positive, D negative,
• D positive, N negative,
• N and D both positive, with N < D,
• N and D both negative, with N > D.

The boundary equation is y− x2 + 1 = y+ x2 − 1,
which gives x = ±1. This is the boundary at
N = D. There are also possible boundaries at
N = 0 and D = 0. These are y = x2 − 1 and
y = 1 − x2. So, the only locations at which there
can be boundaries are

x

y

Testing the various regions, the solution set is

x

y

4758. Let p be the time of release. At this instant, the
particle is at position (3 sin kp, 19.6) with velocity
3k cos kp. In projectile motion, the vertical suvat
is −19.6 = − 1

2gt
2, so t = 2. The horizontal motion

is at constant velocity. So, the landing position is

x = 3 sin kp+ 6k cos kp.

We need to choose k such that the range is [−5, 5].
So, the amplitude, in harmonic form, must be 5.
This is the Pythagorean sum of the coefficients:

32 + (6k)2 = 52

=⇒ k = ± 2
3 .

4759. (a) The relevant identity is

3x2 + 2xy + 3y2

≡ a(x+ y)2 + b(x− y)2

≡ (a+ b)x2 + (2a− 2b)xy + (a+ b)y2.

Equating coefficients, a+b = 3 and 2a−2b = 2.
This gives a = 2 and b = 1. So,

f(x, y) = 2(x+ y)2 + (x− y)2.

(b) Let (X,Y ) be new coordinate variables defined
by X = x + y and Y = x − y. The curve
f(x, y) = 1 is then

2X2 + Y 2 = 1.

This is an ellipse in the (X,Y ) plane, whose
axes are at 45° to those of the (x, y) plane:

x

y X

Y

4760. (a) For intersections,

x3 − x = x3 − 3kx2 + 3k2x− k3 − x+ k

=⇒ 3kx2 − 3k2x+ k3 − k = 0.

Setting ∆ = 0,(
−3k2)2 − 12k(k3 − k) = 0

=⇒ 12k2 − 3k4 = 0
=⇒ k = 0,±2.

For k = 0, the curves coincide everywhere, so
this value isn’t relevant. The set of values of k
for which the curves intersect is [−2, 2].

(b) The second curve is a translation of the first
by vector 1

2 i. So, the problem has rotational
symmetry around the point C : (1/4, 0). Hence,
this must be the centre of the largest circle.

x

y
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The radius is greatest if the circle is tangent
to the curve. So, we need to find the normal
to the curve y = x3 − x which passes through
C. The normal at x = a is

y − a3 + a = − 1
3a2 − 1(x− a).

Substituting point C,

− a3 + a = − 1
3a2 − 1

( 1
4 − a

)
=⇒ (−a3 + a)(3a2 − 1) = a− 1

4

=⇒ 3a5 − 4a3 + 2a− 1
4 = 0.

This is not analytically solvable. N-R is

an+1 = an −
3a5

n − 4a3
n + 2an − 1

4
15a4

n − 12a2
n + 2 .

Running this with a0 = 0, we get a1 = 0.125
and then an → 0.129266. This gives the point
of tangency with y = x3 − x as

(0.129266,−0.127106).

The distance of this point from (1/4, 0) is

r = 0.1753 (4sf).

4761. The perimeter is

2s = a+ b+ c

= n
(
m2 + k2)

+m
(
n2 + k2)

+
(
m+ n

)(
mn− k2)

≡ nm2 + nk2 +mn2 +mk2

+m2n+mn2 −mk2 − nk2

≡ 2mn2 + 2m2n.

So, the semiperimeter is s = mn(m + n). Hence,
the factors in the radicand of Heron’s formula are

(s− a) = mn
(
m+ n

)
− n

(
m2 + k2)

≡ n
(
mn− k2)

,

(s− b) = mn
(
m+ n

)
−m

(
n2 + k2)

≡ m
(
mn− k2)

,

(s− c) = mn
(
m+ n

)
−

(
m+ n

)(
mn− k2)

≡ (m+ n)k2.

Therefore, the radicand is

s(s− a)(s− b)(s− c)
= mn

(
m+ n

)
n

(
mn− k2)

m
(
mn− k2)(

m+ n
)
k2

≡ m2n2k2(
m+ n

)2(
mn− k2)2

.

Hence, by Heron’s formula,

A = mnk(m+ n)(mn− k2), as required.

4762. The boundary equation may be factorised as

xy
(
x2 − y2)

= 1.

Squaring this,

x2y2(
x2 − y2)2 = 1.

Substituting the equation of circle,

x2(
2 − x2)(

2x2 − 2
)2 = 1

=⇒ 4x8 − 16x6 + 20x4 − 8x2 + 1 = 0

=⇒
(
2x4 − 4x2 + 1

)2 = 0.

The biquadratic 2x4 − 4x2 + 1 has ∆ = 8 > 0, so
x2 = 1 ±

√
2/2 satisfies the above. Both of these

values 1 ±
√

2/2 are positive, so the biquadratic has
four distinct real roots.
In the octic, each of these is a double root, giving a
point of tangency. Hence, the region x3y−xy3 ≥ 1
is tangent to x2 + y2 = 2 at four points.

4763. There are three vertices which share an edge with
A. Call these P,Q,R. Then call the remaining
vertices X,Y, Z.

A

B

P

Q

X

Y

Z

R

From A, there are three symmetrical choices to
P,Q,R. Choose P . From P , there are two choices,
X and Y . Again, these are symmetrical. Choose
X. At this point, there are three options:

1 A → P → X → B

2 A → P → X → Q → Z → B

3 A → P → X → Q → Z → R → Y → B.
There were six symmetrical choices at the start,
which gives 6 × 3 = 18 routes in total.

4764. For y = k to intersect the curve three times, the
following equation must have three distinct roots:

1
x

− 1
x3 − k = 0

=⇒ kx3 − x2 + 1 = 0.

For a cubic to have three distinct roots, it must
have stationary values which are +ve and −ve.
Setting the derivative to zero,

3kx2 − 2x = 0
=⇒ x(3kx− 2) = 0
=⇒ x = 0, 2

3k .
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Evaluating the cubic,

kx3 − x2 + 1
∣∣
x=0 = 1 > 0

kx3 − x2 + 1
∣∣
x=2/3k

= − 4
27k2 + 1.

So, for three distinct roots,

− 4
27k2 + 1 > 0

⇐⇒ |k| < 2
3

√
3 .

We exclude k = 0, for which the above argument
is not well defined; the curve has no x intercepts.
The full solution, therefore, is

k ∈
(

− 2
3

√
3 , 0

)
∪

(
0, 2

3
√

3

)
.

4765. (a) Squaring both sides,

3 −
√

5
8 = a2 + 5b2 + 2ab

√
5

=⇒ 3 −
√

5 = 8a2 + 40b2 + 16ab
√

5.

Equating rational and irrational coefficients,

3 = 8a2 + 40b2,

−1 = 16ab.

Solving simultaneously, the relevant values are

a = b = 1
4 .

(b) We use the identity cos 2θ ≡ 1 − 2 sin2 θ, with
θ = 18°. This gives

1 − 2 sin2 18° = 1
4
(
1 +

√
5
)

=⇒ 4 − 8 sin2 18° = 1 +
√

5

=⇒ sin2 18° = 3 −
√

5
8 .

Taking the positive root,

sin 18° =
√

3 −
√

5
2
√

2
.

The result from part (a) converts this to

sin 18° = 1
4 (

√
5 − 1), as required.

4766. The relevant integral is

A = 6
∫ a

0

1
1 + x2 dx.

Let x = tan θ, so that dx = sec2 θ dθ. The new
limits are θ = 0 to θ = arctan a. The area is

6
∫ arctan a

0

1
1 + tan2 θ

sec2 θ dθ

= 6
∫ arctan a

0
1 dθ

= 6 arctan a.

The value of the integral is given as 2π, so

6 arctan a = 2π

Hence, a = tan π/3, which is
√

3.

4767. The equation h′′(x) = 0 has exactly two roots.
Call them a and b. Assume, for a contradiction,
that both are roots of odd multiplicities m and n.
Taking out factors of (x − a)m and (x − b)n, the
equation h′′(x) = 0 can be expressed as

(x− a)m(x− b)n p(x) = 0,

where p(x) has no factors of (x − a) or (x − b).
But, since m + n is even, p(x) is a polynomial of
odd degree. So, it must have a root. This root is
neither a nor b, nor can it be anything else. This
is a contradiction.

So, one root of h′′(x) must have even multiplicity.
At this root, h′′(x) does not change sign. Hence,
y = h(x) has exactly one point of inflection.

4768. Assume, for a contradiction, that the cube root of
5 is rational, and can be written as p/q, where p
and q are integers. This gives

5q3 = p3.

Consider the number of factors of 5 on each side
of this equation. The number of factors of 5 in a
cube must be a multiple of 3. So, equating the
number of factors of 5, we get 3m + 1 = 3n, for
some integers m and n. This is a contradiction:
the rhs is a multiple of 3, but the lhs isn’t. So,
the cube root of 5 must be irrational.

4769. The second equation is a circle of radius 2 centred
at the origin. Factorising the first equation,

(x− y)
(
(x− y)2 − k

)
= 0

⇐⇒ x− y = 0,±
√
k.

So, the locus of the first equation is a set of lines:

y = x,

y = x±
√
k.

The former always intersects twice with the circle.
To get two more points of intersection, we require
k > 0. In this case, the two lines y = x ±

√
k are

symmetrical. So, each must generate exactly one
point of intersection with the circle. They must,
therefore, be tangential to it:

This occurs at k = 8.



w
w

w
.g

il
es

ha
yt

er
.c

om
/f

iv
et

ho
us

an
dq

ue
st

io
ns

.a
sp

fe
ed

ba
ck

:
gi

le
s.

ha
yt

er
@

w
es

tm
in

st
er

.o
rg

.u
k

v1
w

w
w

.gileshayter.com
/fivethousandquestions.asp

feedback:
giles.hayter@

w
estm

inster.org.uk

v1

4770. Since b is a root, we know that

ab3 + ab2 + ab+ b = 0
∴ ab2 + ab+ a+ 1 = 0.

This is a quadratic in b. It must have at least one
root. Setting ∆ > 0,

a2 − 4a(a+ 1) ≥ 0
=⇒ −a(3a+ 4) ≥ 0
=⇒ − 4

3 ≤ a ≤ 0, as required.

4771. Using the cosine rule for △ABC,

cosB = a2 + c2 − b2

2ac .

And for △ABM ,

m2 = 1
4a

2 + c2 − ac cosB

= 1
4a

2 + c2 − a2 + c2 − b2

2
≡ − 1

4a
2 + 1

2b
2 + 1

2c
2.

Taking the positive square root,

m =
√
b2 + c2

2 − a2

4 , as required.

4772. The symmetry of the cube and such a regular
hexagon dictates that the vertices of the hexagon
must be at the midpoints of edges of the cube.

If the cube has side length 1, then the hexagon has
side length

√
2/2. Simplifying, the ratio is

√
2 : 1.

4773. (a) The indefinite integral of g is G. So,∫ a

0
g(x) dx =

[
G(x)

]a

0

= G(a) − G(0)
= b.

(b) Integrating by inspection,∫ a

0
x g

(
x2)

dx =
[

1
2 G

(
x2)]a

0

≡ 1
2 G

(
a2)

− 1
2 G(0)

= 1
2b

2.

Nota Bene

This result could also be attained, and further
understood, by using the substitution u = x2.

4774. We address the factors one by one:
1 (x2 + x+ k2 + 1) is a quadratic with

∆ = 1 − 4(k2 + 1)
= −4k2 − 3 < 0.

So, this factor has no real roots.
2 (x3 − x− k2 − 1) is cubic, so it must have at

least one real root. For stationary values,

3x2 − 1 = 0
=⇒ x = ± 1√

3 .

Substituting in, the stationary values are

∓ 2
3

√
3 − k2 − 1.

Since 2/3
√

3 < 1, both of the stationary values
are negative, whatever the value of k. Hence,
this factor has exactly one root.

3 Since k4 > 0 and x6 ≥ 0, this factor cannot
have any real roots.

The total number of roots, therefore, is 1.

4775. The equations x2n + y2n = 1 are akin to circles.
The first, n = 1, is the unit circle centred on the
origin. The second is x4 + y4 = 1, which is outside
or on the unit circle:

x

y

The pattern continues, with the curves for higher
powers outside the curves for lower powers. In the
limit of large n, the curves tend towards the dotted
square above. Hence, lim

n→∞
An = 4.

Nota Bene

For a more detailed proof, consider the point of
intersection of x2n + y2n = 1 with y = x, which
is the point on the curve furthest from the origin.
Solving simultaneously gives 2x2n = 1, so

x = 2n

√
1
2 .

As x → ∞, this tends to 1. So, the relevant point
of intersection tends towards the point (1, 1). The
same applies in all four quadrants, giving explicit
proof of the result above.
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4776. (a) Squaring the y equation,

y2 = sin2 2t
=⇒ y2 = 4 sin2 t cos2 t

=⇒ y2 = 4x2(
1 − x2)

.

(b) The lobe with x ≥ 0 has t limits t = 0 to t = π.
The x derivative is ẋ = − sin t. So, the area of
both lobes is given by

A = 2
∫ π

0
sin 2t · − sin t dt

= −4
∫ π

0
sin2 t cot t dt.

Integrating by inspection,

A = −4
[

1
3 cos3 t

]π

0

= −4
(
− 1

3 − 1
3
)

= 8
3 , as required.

4777. Consider the domain x ∈ (0, 1]. Over this domain,
the range of ln x is (∞, 0]. Using this range as the
domain of the sine function and the fact that the ln
function is one-to-one, the value of sin(ln x) must
oscillate continuously between −1 and 1 infinitely
many times in between x = 0 and x = 1.
The curve y = sin(ln x) must therefore cross the
line y = x infinitely many times between x = 0
and x = 1. Each of these gives a distinct root.

4778. From the information given, the functions are

f(x) = (x− a)(x− b),
g(x) = (x− b)(x− c).

The equation f(x) + g(x) = 0 is

(x− a)(x− b) + (x− b)(x− c) = 0
=⇒ (x− b)

(
(x− a) + (x− c)

)
= 0.

This has a root at x = b. And the second factor
also has a root, at 2x − a − c = 0. This gives
x = 1

2 (a + c). We need to show that these roots
are distinct, i.e. that

b ̸= a+ c

2 .

Assume, for a contradiction, that 2b = a+c. Using
the fact of gp to substitute b = ar and c = ar2,

2ar = a+ ar2

=⇒ a(r2 − 2r + 1) = 0
=⇒ a(r − 1)2 = 0
=⇒ a = 0 or r = 1.

We are told that neither is the case, so this is a
contradiction. Hence, the roots provided by the
two factors are distinct, giving exactly two roots
overall.

4779. We sketch the lhs and rhs. Consider

y = |x− 1| + |x+ 1|.

This has changes of behaviour at x = ±1, at which
points its y value is 2. Outside the domain [−1, 1],
it has gradient ±2. Inside, the gradient is 0. The
graphs of both sides are

x

y

(1, 2)(−1, 2) 1

As can be seen, there are no x values for which the
lhs and rhs of the equation are equal.

4780. Eliminating t from horizontal and vertical suvats,
the equation of the trajectory is

y = x tan θ − gx2

2u2 (tan2 θ + 1).

Since (p, q) lies on this trajectory,

q = p tan θ − gp2

2u2 (tan2 θ + 1).

Writing this as a quadratic in tan θ,

gp2 tan2 θ − 2pu2 tan θ + 2qu2 + gp2 = 0.

The quadratic formula gives

tan θ = 2pu2 ±
√

4p2u2 − 4gp2(2qu2 + gp2)
2gp2

≡
u2 ±

√
u2 − g(2qu2 + gp2)

gp
, as required.

4781. Solving as a quadratic in y,

y2 + x2y − 1 = 0

=⇒ y = −x2 ±
√
x4 + 4

2 .

This gives two distinct curves, each of which is
symmetrical in the y axis. Their y intercepts are
±1. In each, as x → ±∞, the +4 under the square
root becomes negligible, and

√
x4 + 4 → x2 from

above. Hence, as x → ±∞, the behaviour is:
• with the positive root, y → 0+,
• with the negative root, y → −x2.

So, the graph is

x

y

1

−1
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4782. Let A be the apex, C be the centre of the base,
X,Y, Z be the vertices of the base, and M be the
midpoint of XY . The gradient triangles are

△ACM for the sloped faces,
△ACZ for the sloped edges.

Since both triangles have the same vertical height
AC, this doesn’t enter into calculations. The only
relevant consideration is the ratio CM : CZ.

Z

Y

X

M
C

The centroid divides medians in the ratio 1 : 2. So,
the gradient of a face is twice that of an edge.

4783. Using a double-angle formula, we can factorise the
lhs of the equation of the curve:

sin 2x− 2ey sin x+ e−y cosx− 1 = 0
⇐⇒ 2 sin x cosx− 2ey sin x+ e−y cosx− 1 = 0
⇐⇒

(
cosx− ey

)(
2 sin x+ e−y

)
= 0.

So, the two branches of the curve are

ey = cosx,
e−y = −2 sin x.

The point of self-tangency is on both, so we solve
simultaneously. Multiplying the equations,

1 = −2 sin x cosx
=⇒ sin 2x = −1.

Taking the relevant value, x = − π
4 . Substituting

this back into either curve gives coordinates

A :
(

−π/4, ln(
√

2/2
))
.

4784. We use the product(
x− y

)(
x3 + x2y + xy2 + y3)

≡ x4 − y4.

The first-principles limit is

dy

dx
= lim

h→0

(x+ h) 1
4 − x

1
4

h
.

Multiplying top and bottom by the same factor,
the expression inside the limit is

(x+ h) − x

h
(

(x+ h) 3
4 + (x+ h) 2

4x
1
4 + (x+ h) 1

4x
2
4 + x

3
4

)
≡ 1

(x+ h) 3
4 + (x+ h) 2

4x
1
4 + (x+ h) 1

4x
2
4 + x

3
4
.

We can now take the limit, giving
dy

dx
= 1
x

3
4 + x

3
4 + x

3
4 + x

3
4

≡ 1
4x

− 3
4 .

4785. The derivatives are

x = e−t sin 2t
ẋ = e−t(2 cos 2t− sin 2t)
ẍ = e−t(−4 cos 2t− 3 sin 2t).

Substituting into the lhs of the de, we multiply
through by et. This leaves

(−4 cos 2t− 3 sin 2t) + a(2 cos 2t− sin 2t)
+ b sin 2t ≡ 0.

Equating coefficients of cos 2t and sin 2t,

cos 2t : −4 + 2a = 0,
sin 2t : −3 − a+ b = 0.

Solving these, a = 2 and b = 5.

Nota Bene

The use of the identity symbol in the above is key.
A de must hold for all values of the independent
variable, which allows us to equate coefficients.
There’s quite a subtle point here. In a de, the
equality, which is written (correctly) as = rather
than ≡, has a meaning different from the equals
sign in t2 = 4 and also different from the identity
symbol in t2 − 4 ≡ (t + 2)(t − 2). It has both
meanings, depending on how you look at it:

1 identity in the variable t,
2 equation in the function t 7→ x.

In a de such as dy
dx = 2x, we require the thing to

be an identity in x, but are nevertheless asking a
question about the functional relationship between
y and x, which might or might not be true. In
other words, y = x2 + c makes the two sides of the
de identical, but y = x3 + c would not make them
identical. So, we use = in the initial de, because
it does not always hold:

dy

dx
= 2x.

But, having substituted a potential relationship in,
e.g. y = xk + c, we require an identity:

kxk−1 ≡ 2x.

4786. Firstly, we need to find a root. Calling the given
expression f(x), the N-R iteration is

xn+1 = xn − f(xn)
f ′(xn)

.

Running the iteration with almost any starting
point yields xn → 6. Taking out a factor of (x−6),

x5 − 6x4 + 6x3 − 36x2 + 9x− 54
≡ (x− 6)(x4 + 6x2 + 9)
≡ (x− 6)(x2 + 3)2.

The squared quadratic factor is irreducible, so we
have factorised fully.
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4787. The force diagrams are

m1 m2

m1g m2g

T1 T2

a a

The upward force exerted by the pulley on the
string is T1 + T2. So, this is the downwards force
exerted by the string on the pulley. If the system
moves, then friction is at maximal. The tension T1
is necessarily larger than the tension T2, and the
difference, we are told, is

T1 − T2 = µ(T1 + T2).

The equation of motion for the first block is

m1g − T1 = m1a

=⇒ T1 = m1g −m1a.

And for the second block:

T2 −m2g = m2a

=⇒ T2 = m2g +m2a.

Substituting these into the friction equation,

m1g −m1a− (m2g +m2a)
= µ(m1g −m1a+m2g +m2a)

=⇒ am1(1 − µ) + am2(1 + µ)
=

(
m1(1 − µ) −m2(1 + µ)

)
g

=⇒ a = m1(1 − µ) −m2(1 + µ)
m1(1 − µ) +m2(1 + µ)g.

Consider a smooth system with masses M < m.
Taking Nii along the string,

a = M −m

M +m
g.

Substituting M = m1(1 − µ) and m = m2(1 + µ),
we get the acceleration of the rough system. So,
if it moves, the rough system with masses m1
and m2 behaves like a smooth system with masses
m1(1 − µ) and m2(1 + µ).

4788. Multiplying by x3, this is a cubic in x9:

x27 − 3x18 + 3x9 − 1 = 0
=⇒ (x9 − 1)3 = 0
=⇒ x9 = 1
=⇒ x = 1.

4789. Using compound-angle formulae, the first term is

sin2(x+ y)
≡ (sin x cos y + cosx sin y)2

≡ sin2 x cos2 y + 2 sin x cosx sin y cos y
+ cos2 x sin2 y.

The second term is

cos2(x− y)
≡ (cosx cos y + sin x sin y)2

≡ cos2 x cos2 y + 2 sin x cosx sin y cos y
+ sin2 x sin2 y.

Adding the above, the first and third terms of each
expansion combine, via the first Pythagorean trig
identity, to give sin2 y+ cos2 y, and then to give 1.
So, the original equation is

4 sin x cosx sin y cos y = 0
=⇒ sin 2x sin 2y = 0
=⇒ sin 2x = 0 or sin 2y = 0.

This implies that one of x or y is a multiple of π
2 .

4790. Since the quartic has two local minima on the x
axis, it has two double roots. So, we must be able
to write

36x4 + 12x3 − 11x2 − 2x+ 1
≡ 36(x− a)2(x− b)2.

Equating coefficients,

x3 : 12 = 36(−2a− 2b) =⇒ a+ b = − 1
6 ,

x0 : 1 = 36a2b2.

Solving these, a and b are 1/3 and −1/2. So, these
are the x coordinates of the local minima.

4791. Let u = x+ y. Differentiating with respect to x,

du

dx
= 1 + dy

dx

=⇒ dy

dx
= du

dx
− 1.

Enacting the substitution,

du

dx
− 1 = u

=⇒ du

dx
= u+ 1

=⇒
∫ 1
u+ 1 du =

∫
1 dx

=⇒ ln |u+ 1| = x+ c

∴ u+ 1 = Aex.

This gives the general solution as

x+ y = 1 = Aex

=⇒ y = Aex − x− 1.
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4792. Adding the equations,

x+ y = 4t
=⇒ t = 1

4 (x+ y).

Subtracting the equations,

y − x = 2t2.

Substituting the former into the latter,

y − x = 1
8 (x+ y)2.

The x+y and y−x axes are perpendicular, at 45°
to x and y. So, the parametric equations define a
parabola at 45° to the x and y axes:

x

y

8

−8

4793. We can rewrite the fraction as

f(x) = x2 + 2x+ 1
x2 + 2x

≡ 1 + 1
x(x+ 2) .

The range of x(x + 2) is [−1,∞). So, the range
of its reciprocal is (−∞,−1] ∪ (0,∞). Adding 1 to
this, the range of the function f is

(−∞, 0] ∪ (1,∞).

Nota Bene

The graph y = f(x) is

x

y

The asymptotes are x = 0, x = −2 and y = 1.

4794. (a) The boundary gradients are m = 1 and m = 2.
Using a calculator, for M ∼ N(0, 1),

P(1 < M < 2) = 0.136 (3sf).

(b) Using the conditional probability formula,

P(steeper than y = x | +ve gradient)

= P(M > 1)
P(M > 0)

= 0.158655
0.5

= 0.317 (3sf).

4795. Let x = sec θ. Then dx = sec θ tan θ dθ. Enacting
the substitution,∫ 1

x
√
x2 − 1

dx

=
∫ 1

sec θ
√

sec2 θ − 1
sec θ tan θ dθ.

Using the second Pythagorean identity, this is∫ 1√
tan2 θ

tan θ dθ

=
∫

1 dθ

= θ + c

= arcsecx+ c.

4796. The factorisation is

−x3y − xy2 − xy + y + 1 + x2

≡ (x2 + y + 1)(1 − xy).

4797. Consider the curve y = cos2 x− 2 cosx. For sps,

− 2 cosx sin x+ 2 sin x = 0
=⇒ sin x(1 − cosx) = 0
=⇒ sin x = 0 or cosx = 1.

In [0, 2π), this gives x = 0, π. So, the stationary
values are −1 and 3. The curve y = cos2 x−2 cosx
looks as follows:

x

y

−1

3

For the equation cos2 x − 2 cosx + k = 0 to have
exactly one root in [0, 2π), the line y = −k must
intersect this curve exactly once over this domain.
So, −k = −1, 3. This gives k ∈ {−3, 1}.
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4798. Consider a graph of y = f(x). The values x + k

and x− k are 2k apart. The quantity g(x) is then
the y distance between such a pair of points:

x

y

(
x− k, f(x− k)

)
(
x+ k, f(x+ k)

)

2k

g(x)

For any polynomial function f and constant k, the
leading coefficients of f(x + k) and f(x − k) are
the same. Hence, the difference between them is a
quadratic function. From the graph, we can see
that this is a positive quadratic: the difference
g(x) must increase as the gradient of the curve
increases, which happens as x → ±∞.
By symmetry, the minimum of the quadratic g(x)
must occur at the point of inflection of f(x). Again
by symmetry, this is halfway between the sps.
Therefore, g(x) is minimised at 1

2 (p+ q).

4799. If the tension is too low, then equilibrium will
be broken: the upper core will sink downwards,
thereby separating the two lower cores. If the
tension is high, then the two lower cores will be
pressed against one another. In the boundary case
between these regimes, the cores are as depicted,
but the reaction force between the two lower cores
is zero. The force diagrams are

W TT

R2R2

W

T

T

R2

R1

W

T

T

R2

R1

Resolving horizontally for one of the lower cores,

T + 1
2T − 1

2R2 = 0
=⇒ R2 = 3T.

Resolving vertically for the upper core,
√

3R2 −
√

3T −W = 0.

Substituting R2 = 3T ,

3
√

3T −
√

3T −W = 0
=⇒ 2

√
3T = W

=⇒ T =
√

3
6 W, as required.

4800. Let u = b + ekx, giving du = kekx dx. We can
rewrite this as

dx = du

k(u− b) .

Enacting the substitution,∫
a+ ekx

b+ ekx
dx

=
∫

a+ u− b

ku(u− b) du.

Writing in partial fractions,

a+ u− b

ku(u− b) ≡ A

u
+ B

u− b

=⇒ a+ u− b ≡ Ak(u− b) +Bku.

Equating coefficients of u, 1 = Ak+Bk. Equating
the constant terms, a−b = −Abk. The latter gives

A = b− a

bk
.

The former then gives

B = 1
k

−A = b

bk
− b− a

bk
= a

bk
.

So, the integral is∫
b− a

bku
+ a

bk(u− b) du

= b− a

bk
ln |u| + a

bk
ln |u− b| + c

= b− a

bk
ln |b+ ekx| + a

bk
ln |ekx| + c

≡ (b− a) ln |b+ ekx| + akx

bk
+ c, as required.

End of 48th Hundred


